
Fast High-performance Modeling Tools 
for Many-core Architectures

Stefan L. Glimberg, Allan P. Engsig-Karup, Hans Henrik B. Sørensen, Nicolai F. Gade-Nielsen, Dennis Noer, Erik Zenner, Morten G. Madsen

Introduction and Background
GPULab - A competence center and laboratory for research and collaboration within academia and partners in the industry. Established in 2008 at the Section for Scientific
Computing, DTU Informatics, Technical University of Denmark. In GPULab we focus on the utilization of Graphics Processing Units (GPUs) for high-performance computing
applications and software tools in science and engineering. The goals are to contribute to the development of new state-of-the-art mathematical models and algorithms for
maximum performance and assimilation of results to academic and industrial partners in our network. Our approaches calls for multi-disciplinary skills and understanding of
hardware, software development, profiling tools and tuning techniques, numerical analysis, along with expert knowledge application areas within science and engineering.

Per Christian Hansen
Jan Hesthaven
Bernd Dammann
John Bagterp Jørgensen

Allan Engsig-Karup
Jeppe Frisvad
Boyan Lazarov
Hans Henrik Brandenborg Sørensen

Stefan Lemvig Glimberg
Nicolai Fog Gade-Nielsen

http://gpulab.imm.dtu.dk/

Development of a Massively Parallel Wave Analysis Tool
Ongoing work is concerned with the development of a GPU-accelerated nonlinear free-surface
model (OceanWave3D) for simulation of unsteady fully nonlinear water waves over uneven
depths. The flexible-order finite difference model is based on a unified potential flow formulation,
under the assumption of irrotational inviscid flow. We have redesigned the entire algorithm to
enable efficient utilization of allocated hardware resources - currently targeting many-core GPUs.
Algorithmic efficiency is achieved by solving the bottleneck problem, a large sparse linear system
of equations, iteratively by employing a defect correction method preconditioned by a robust
multigrid method. This strategy results in more than an order magnitude in both problem size and
practical speedup (relative to optimized single-threaded CPU code).

GPULab Library – a High-performance GPU-based Library for 
the Development of Scientific Applications
We have an ongoing development of a GPU-based generic C++ library for scientific computing. The
two main goals are to create a common playground for the developers at the section and interested
network contacts, and to keep an up-to-date platform containing the latest results from the
developers. We now have several components for solving large scale partial differential equations.
However, this should not be a limitation and we soon expect to have show-cases with dynamic
optimization and model control problems as well. In the future we seek to expand the library into a
fully distributed tool, in order to achieve maximum performance on cluster-based hardware systems.

Fast Cryptanalysis Tool
In this project the focus has been on developing an efficient high-performance tool for crypto-analysis, utilizing
affordable many-core consumer Graphics Processing Units (GPUs). The crypto-analysis is based on a bit-
sliced DES brute force algorithm. We are developing an efficient implementation of the DES algorithm, which
relies mostly on bitwise operations and takes advantage of the high on-chip bandwidth of GPUs. The current
implementation is based on CUDA and a GTX 275 gaming card. A break down of the step-wise improvement
in the model demonstrates ~10 times speed up in the initial naïve implementation, and after a range of
incremental optimizations the implementation achieved a speed up of ~20 times. With the GTX 275 we have
found that it is possible to test up to 680 million password keys per second, which is a significant improvement.

Fig. 1: We achieve linear scaling of the memory footprint for an 
increasing number of total grid points.

Auto-tuning of Dense Linear Algebra on GPUs
We have implemented an auto-tuning framework that can automate the performance tuning
process by running a large set of empirical evaluations to configure applications and libraries
on the targeted GPU platform. Preliminary work is focused on dense vector and matrix-
vector operations, which form the backbone of level 1 and level 2 routines in the Basic Linear
Algebra Subroutines (BLAS) library and are therefore of great importance in many scientific
applications. As an example, we develop a single-precision CUDA kernel for the matrix-
vector multiplication (SGEMV). The target hardware is the most recent Nvidia Tesla 20-series
(Fermi architecture). Our tuned kernels display significantly better performance than the
current CUBLAS v.3.2 library.Fig. 3: Performance of matrix-vector multiplication (SGEMV) in color coded form over the 24x24 logarithmic auto-tuning mesh of

matrix sizes. Dark blue represents low performance, while dark red represent high performance. The figures compare our auto-
tuned kernel to the most commonly used numerical libraries for GPUs, the Nvidia CUBLAS v3.2 and the MAGMA v1.0.0-rc5.

Accelerating Economic Model Predictive Control using GPUs
As stochastic energy production such as wind becomes more common, it is necessary to either store the energy
for later consumption or control the energy consumption to coincide with the energy production. One method to
address this problem is the Smart Grid, where Model Predictive Control can be used to optimize energy
consumption to match with the predicted stochastic energy production and minimize the cost of energy
production from conventional power plants. This can be formulated as a convex optimization problem and solved
using primal-dual interior-points methods. The main computational tasks in such a method are matrix-matrix
multiplications and Cholesky factorization, both of which are very suitable for GPU acceleration. Initial results of
a test case controlling two power plants to match energy consumption show an speed-up of up to ~25 using a
Nvidia Tesla C2050 compared to a sequential CPU version running on a Intel i7-920.

gpulab@imm.dtu.dk – http://gpulab.imm.dtu.dk/

Fig. 5: Power plant control to minimize the energy production cost with a 500 time-step prediction
horizon. P.G. #1 is a slow, but cheap power plant while P.G. #2 is a fast, but expensive power plant.

Fig. 4: Efficiency comparison of password key tests per second for CPU, naïve and optimized GPU kernels.

Fig. 2: Performance speedups for several different GPU 
architectures versus the CPU (single thread) version.


	Fast High-performance Modeling Tools �for Many-core Architectures

