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Python in 4 Minutes

Literals 1234, 1234., 0xabc

"a string" """a multi-line

string""" ["a", "list"]

("a", "tuple", 17)

{"a": 17, "dictionary": 19}

Flow Control
if True and a == 10:

print "?" # a comment

while 0 <= x < 17 :

pass # break, continue

for i in [0, 1, 2]:

raise Exception("!")

Functions, Classes
def my function(x):

return 17*x

class MyClass:

def init (self, x):

self.x = x

Program Semantics
a = [1,2,4]

b = a

b.append(17)

print a

# [1, 2, 4, 17]

http://docs.python.org

More stuff:

Python 2 vs Python 3

‘Batteries included’

The package index

Cython, Jython, IronPython, PyPy

Interactive console, IPython,
PuDB, Virtualenv, Pip, Spyder,
PEP 8

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA
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Numpy in 4 Minutes

Creating/Modifying Arrays
import numpy as np

x = np.array([[1,2],[4,5]])

print x.shape # (2,2)

y = np.zeros((20000, 3),

dtype=np.float64)

z = np.empty((20000, 3))

u = np.ones((30, 40))

v = np.linspace(1, 5,20,

endpoint=False)

# also: mgrid, eye, arange

+, -, *, +=, np.dot

Indexing Arrays
a = x[:, 1] # a ‘view’

a[:, :] = 17

y = 17

x[3:-3:-1, :] = 17

x[x == 19] = 17

Broadcasting
y[:, :] = 17

y[:, :] = [0, 1, 2]

w = np.array([0, 1, 2]) \
[:, np.newaxis] * [0, 1, 2]

http://docs.scipy.org

More stuff:

‘ufuncs’ sin,exp,...

Linear Algebra, FFT, . . . , SciPy

Structured/masked arrays

‘Fancy’ Indexing

Matplotlib, MayaVi2

C API

Google ‘Numpy Medkit’

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA
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Questions?

?
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CPU Chip Real Estate

Die floorplan: VIA Isaiah (2008).
65 nm, 4 SP ops at a time, 1 MiB L2.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA
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“CPU-style” Cores

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

CPU-“style” cores 

ALU 
(Execute) 

Fetch/ 
Decode 

Execution 
Context 

Out-of-order control logic 

Fancy branch predictor 

Memory pre-fetcher 

Data cache 
(A big one) 

13 

Credit: Kayvon Fatahalian (Stanford)
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Slimming down

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Slimming down 

ALU 
(Execute) 

Fetch/ 
Decode 

Execution 
Context 

Idea #1:  

Remove components that 
help a single instruction 
stream run fast  

14 

Credit: Kayvon Fatahalian (Stanford)
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More Space: Double the Number of Cores

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Two cores   (two fragments in parallel) 

ALU 
(Execute) 

Fetch/ 
Decode 

Execution 
Context 

ALU 
(Execute) 

Fetch/ 
Decode 

Execution 
Context 

<diffuseShader>: 

sample r0, v4, t0, s0 

mul  r3, v0, cb0[0] 

madd r3, v1, cb0[1], r3 

madd r3, v2, cb0[2], r3 

clmp r3, r3, l(0.0), l(1.0) 

mul  o0, r0, r3 

mul  o1, r1, r3 

mul  o2, r2, r3 

mov  o3, l(1.0) 

fragment 1 

<diffuseShader>: 

sample r0, v4, t0, s0 

mul  r3, v0, cb0[0] 

madd r3, v1, cb0[1], r3 

madd r3, v2, cb0[2], r3 

clmp r3, r3, l(0.0), l(1.0) 

mul  o0, r0, r3 

mul  o1, r1, r3 

mul  o2, r2, r3 

mov  o3, l(1.0) 

fragment 2 
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Credit: Kayvon Fatahalian (Stanford)
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. . . again

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Four cores   (four fragments in parallel) 
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(Execute) 
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Execution 
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Execution 
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. . . and again

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Sixteen cores   (sixteen fragments in parallel) 

ALU ALU 

ALU ALU 

ALU ALU 

ALU ALU 

ALU ALU 

ALU ALU 

ALU ALU 

ALU ALU 

16 cores = 16 simultaneous instruction streams 
17 Credit: Kayvon Fatahalian (Stanford)

→ 16 independent instruction streams

Reality: instruction streams not actually
very different/independent

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA
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Saving Yet More Space

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Recall: simple processing core 

Fetch/ 
Decode 

ALU 
(Execute) 

Execution 
Context 

19 SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Recall: simple processing core 

Fetch/ 
Decode 

ALU 
(Execute) 

Execution 
Context 

19 

Idea #2

Amortize cost/complexity of
managing an instruction stream
across many ALUs

→ SIMD

Credit: Kayvon Fatahalian (Stanford)
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Idea #2: 
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ALU 5 ALU 6 ALU 7 ALU 8 
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Ctx Ctx Ctx Ctx 

Shared Ctx Data  
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Gratuitous Amounts of Parallelism!

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

128 fragments in parallel  

= 16 simultaneous instruction streams 
16 cores = 128 ALUs 

24 Credit: Kayvon Fatahalian (Stanford)

Example:

128 instruction streams in parallel
16 independent groups of 8 synchronized streams

Great if everybody in a group does the
same thing.

But what if not?

What leads to divergent instruction
streams?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA
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Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Branches

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

But what about branches? 

ALU 1 ALU 2 . . .  ALU 8 . . .  
Time 

(clocks) 

2 ...  1 ... 8 

if (x > 0) { 

} else { 

} 

<unconditional 
shader code> 

<resume unconditional 
shader code> 

y = pow(x, exp); 

y *= Ks; 

refl = y + Ka;   

x = 0;  

refl = Ka;   

26 

Credit: Kayvon Fatahalian (Stanford)
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2 ...  1 ... 8 

if (x > 0) { 

} else { 

} 

<unconditional 
shader code> 
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shader code> 

y = pow(x, exp); 

y *= Ks; 
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x = 0;  
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T T T F F F F F 

Not all ALUs do useful work!  
Worst case: 1/8 performance 
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Credit: Kayvon Fatahalian (Stanford)
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Remaining Problem: Slow Memory

Problem

Memory still has very high latency. . .
. . . but we’ve removed most of the
hardware that helps us deal with that.

We’ve removed

caches

branch prediction

out-of-order execution

So what now?

Idea #3

Even more parallelism
+ Some extra memory

= A solution!

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA
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Hiding shader stalls 
Time 

(clocks) 
Frag 1 … 8 

Fetch/ 
Decode 

Ctx Ctx Ctx Ctx 
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Shared Ctx Data  

ALU  ALU  ALU  ALU  

ALU  ALU  ALU  ALU  
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Idea #3
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+ Some extra memory

= A solution!
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Hiding Memory Latency
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Hiding Memory Latency
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Hiding Memory Latency

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/  

Throughput! 
Time 

(clocks) 

Stall 

Runnable 

2 3 4 

Frag 1 … 8 Frag  9… 16 Frag 17 … 24 Frag 25 … 32 

Done! 

Stall 

Runnable 

Done! 

Stall 

Runnable 

Done! 

Stall 

Runnable 

Done! 

1 

Increase run time of one group 
To maximum throughput of many groups 

Start 

Start 

Start 
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Credit: Kayvon Fatahalian (Stanford)
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GPU Architecture Summary

Core Ideas:

1 Many slimmed down cores
→ lots of parallelism

2 More ALUs, Fewer Control Units

3 Avoid memory stalls by interleaving
execution of SIMD groups
(“warps”)

Credit: Kayvon Fatahalian (Stanford)
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Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

Connection: Hardware ↔ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who cares how

many cores?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program → sequential hardware

or

Sequential program → parallel hardware?

Axis 0

A
xi

s
1

Hardware
Software representation

?

Really: Group provides
pool of parallelism to draw
from.

X,Y,Z order within group
matters. (Not among
groups, though.)

Grids can be 1,2,3-dimensional.
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GPU architecture: Overview

Now know about basic execution model.

Observe: Same model also applies to multi-core CPUs!

→ the “OpenCL” execution model

Will learn more about GPUs later. In particular:

Memory access

Device Management

Synchronization

Note: CPUs have a very different memory system.
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Outline

1 Intro: Python, Numpy, GPUs, OpenCL
Python, Numpy
GPUs
OpenCL

2 GPU Programming with PyOpenCL

3 OpenCL viewed from Python

4 OpenCL implementations
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What is OpenCL?

OpenCL (Open Computing Language) is an
open, royalty-free standard for general purpose
parallel programming across CPUs, GPUs and
other processors. [OpenCL 1.1 spec]

Device-neutral (Nv GPU, AMD GPU,
Intel/AMD CPU)

Vendor-neutral

Comes with RTCG

Defines:

Host-side programming interface (library)

Device-side programming language (!)
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Who?

© Copyright Khronos Group, 2010 - Page 4

OpenCL Working Group

• Diverse industry participation

- Processor vendors, system OEMs, middleware vendors, application developers

• Many industry-leading experts involved in OpenCL’s design

- A healthy diversity of industry perspectives

• Apple made initial proposal and is very active in the working group

- Serving as specification editor 

Credit: Khronos Group
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When?

© Copyright Khronos Group, 2010 - Page 5

OpenCL Timeline

• Six months from proposal to released OpenCL 1.0 specification

- Due to a strong initial proposal and a shared commercial incentive

• Multiple conformant implementations shipping

- Apple’s Mac OS X Snow Leopard now ships with OpenCL

• 18 month cadence between OpenCL 1.0 and OpenCL 1.1

- Backwards compatibility protect software investment

Apple proposes OpenCL 
working group and 
contributes draft specification 
to Khronos

Khronos publicly 
releases OpenCL 1.0 as 
royalty-free 
specification

Khronos releases OpenCL 
1.0  conformance tests to 
ensure high-quality 
implementations

Jun08

Dec08

May09

2H09

Multiple conformant 
implementations ship 
across diverse OS 
and platforms

Jun10

OpenCL 1.1 
Specification released and 
first implementations ship

Credit: Khronos Group
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Why?

© Copyright Khronos Group, 2010 - Page 3

Processor Parallelism

CPUs
Multiple cores driving 
performance increases

GPUs
Increasingly general 
purpose data-parallel 

computing

Graphics 
APIs and 
Shading 

Languages

Multi-
processor 

programming 
– e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing

OpenCL is a programming framework for heterogeneous compute resources

Credit: Khronos Group
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CL vs CUDA side-by-side

CUDA source code:
global void transpose(

float ∗A t, float ∗A,
int a width, int a height )

{
int base idx a =

blockIdx .x ∗ BLK SIZE +
blockIdx .y ∗ A BLOCK STRIDE;

int base idx a t =
blockIdx .y ∗ BLK SIZE +
blockIdx .x ∗ A T BLOCK STRIDE;

int glob idx a =
base idx a + threadIdx.x
+ a width ∗ threadIdx.y;

int glob idx a t =
base idx a t + threadIdx.x
+ a height ∗ threadIdx .y;

shared float A shared[BLK SIZE][BLK SIZE+1];

A shared[threadIdx .y ][ threadIdx .x] =
A[ glob idx a ];

syncthreads ();

A t[ glob idx a t ] =
A shared[threadIdx .x ][ threadIdx .y ];

}

OpenCL source code:
void transpose(

global float ∗a t, global float ∗a,
unsigned a width, unsigned a height)
{

int base idx a =
get group id (0) ∗ BLK SIZE +
get group id (1) ∗ A BLOCK STRIDE;

int base idx a t =
get group id (1) ∗ BLK SIZE +
get group id (0) ∗ A T BLOCK STRIDE;

int glob idx a =
base idx a + get local id (0)
+ a width ∗ get local id (1);

int glob idx a t =
base idx a t + get local id (0)
+ a height ∗ get local id (1);

local float a local [BLK SIZE][BLK SIZE+1];

a local [ get local id (1)∗BLK SIZE+get local id(0)] =
a[ glob idx a ];

barrier (CLK LOCAL MEM FENCE);

a t [ glob idx a t ] =
a local [ get local id (0)∗BLK SIZE+get local id(1)];

}
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OpenCL ↔ CUDA: A dictionary

OpenCL CUDA
Grid Grid

Work Group Block
Work Item Thread

kernel global

global device

local shared

private local

imagend t texture<type, n, ...>
barrier(LMF) syncthreads()

get local id(012) threadIdx.xyz

get group id(012) blockIdx.xyz

get global id(012) – (reimplement)
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OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



Intro PyOpenCL OpenCL from Python Implementations Python, Numpy GPUs OpenCL

OpenCL: Computing as a Service

Host
(CPU)

Memory

Compute Device 0 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 0)

· · ·
· · ·
· · ·

Memory

Compute Device 0 (Platform 1)

· · ·
· · ·
· · ·

Memory

Compute Device 1 (Platform 1)

· · ·
· · ·
· · ·

Memory

Platform 0 (e.g. CPUs)

Platform 1 (e.g. GPUs)

(think “chip”,
has memory
interface)

Compute Unit
(think “processor”,
has insn. fetch)

Processing Element
(think “SIMD lane”)

Python

Device Language: ∼ C99
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Why do Scripting for GPUs?

GPUs are everything that scripting
languages are not.

Highly parallel
Very architecture-sensitive
Built for maximum FP/memory
throughput

→ complement each other

CPU: largely restricted to control
tasks (∼1000/sec)

Scripting fast enough

Python + CUDA = PyCUDA

Python + OpenCL = PyOpenCL
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Outline

1 Intro: Python, Numpy, GPUs, OpenCL

2 GPU Programming with PyOpenCL
First Contact
About PyOpenCL

3 OpenCL viewed from Python

4 OpenCL implementations
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Dive into PyOpenCL

1 import pyopencl as cl , numpy
2
3 a = numpy.random.rand(256∗∗3).astype(numpy.float32)
4
5 ctx = cl. create some context()
6 queue = cl.CommandQueue(ctx)
7
8 a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=a.nbytes)
9 cl .enqueue copy(queue, a dev, a)

10
11 prg = cl.Program(ctx, ”””
12 kernel void twice( global float ∗a)
13 { a[ get global id (0)] ∗= 2; }
14 ”””). build ()
15
16 prg. twice(queue, a.shape, (1,), a dev)

Compute kernel
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Dive into PyOpenCL: Getting Results

8 a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=a.nbytes)
9 cl .enqueue copy(queue, a dev, a)

10
11 prg = cl.Program(ctx, ”””
12 kernel void twice( global float ∗a)
13 { a[ get global id (0)] ∗= 2; }
14 ”””). build ()
15
16 prg. twice(queue, a.shape, (1,), a dev)
17
18 result = numpy.empty like(a)
19 cl .enqueue copy(queue, result , a dev)
20 import numpy.linalg as la
21 assert la .norm(result − 2∗a) == 0
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Dive into PyOpenCL: Grouping

8 a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=a.nbytes)
9 cl .enqueue copy(queue, a dev, a)

10
11 prg = cl.Program(ctx, ”””
12 kernel void twice( global float ∗a)
13 { a[ get local id (0)+ get local size (0)∗get group id (0)] ∗= 2; }
14 ”””). build ()
15
16 prg. twice(queue, a.shape, (256,), a dev)
17
18 result = numpy.empty like(a)
19 cl .enqueue copy(queue, result , a dev)
20 import numpy.linalg as la
21 assert la .norm(result − 2∗a) == 0
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Dive into PyOpenCL: Thinking on your feet

Thinking about GPU programming

How would we modify the program to. . .

1 . . . compute ci = aibi?

2 . . . use groups of 16× 16 work items?

3 . . . benchmark 1 work item per group against 256 work items
per group? (Use time.time() and .wait().)
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PyOpenCL Philosophy

Provide complete access

Automatically manage resources

Provide abstractions

Allow interactive use

Check for and report errors
automatically

Integrate tightly with numpy
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PyOpenCL: Completeness

PyOpenCL exposes all of OpenCL.

For example:

Every GetInfo() query

Images and Samplers

Memory Maps

Profiling and Synchronization

GL Interop
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PyOpenCL: Completeness

PyOpenCL supports (nearly)
every OS that has an OpenCL
implementation.

Linux

OS X

Windows
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Automatic Cleanup

Reachable objects (memory,
streams, . . . ) are never destroyed.

Once unreachable, released at an
unspecified future time.

Scarce resources (memory) can be
explicitly freed. (obj.release())

Correctly deals with multiple
contexts and dependencies. (based
on OpenCL’s reference counting)
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PyOpenCL: Documentation
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Scripting: Interpreted, not Compiled

Program creation workflow:

Edit

Compile

Link

Run
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PyOpenCL, PyCUDA: Workflow

Edit

PyOpenCL/PyCUDA

Run

Program("...")

Cache?

Compiler

no

Binary

Upload to GPU

Run on GPU

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



Intro PyOpenCL OpenCL from Python Implementations First Contact About PyOpenCL

PyOpenCL: Vital Information

http://mathema.tician.de/
software/pyopencl

Downloaded 30k+ times

Complete documentation

MIT License
(no warranty, free for all use)

Requires: numpy, Python 2.4+.

Community: mailing list, wiki

Add-on packages (e.g. PyFFT, Sailfish,
PyWENO)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA
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An Appetizer

Remember your first PyOpenCL program?

Abstraction is good:

1 import numpy
2 import pyopencl as cl
3 import pyopencl.array as cl array
4
5 ctx = cl. create some context()
6 queue = cl.CommandQueue(ctx)
7
8 a gpu = cl array . to device (
9 ctx , queue, numpy.random.randn(4,4).astype(numpy.float32))

10 a doubled = (2∗a gpu).get()
11 print a doubled
12 print a gpu
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pyopencl.array: Simple Linear Algebra

pyopencl.array.Array:

Meant to look and feel just like numpy.

p.a.to device(ctx, queue, numpy array)

numpy array = ary.get()

+, -, ∗, /, fill, sin, arange, exp, rand, . . .

Mixed types (int32 + float32 = float64)

print cl array for debugging.

Allows access to raw bits

Use as kernel arguments, memory maps
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pyopencl.elementwise: Elementwise expressions

Avoiding extra store-fetch cycles for elementwise math:

n = 10000
a gpu = cl array . to device (

ctx , queue, numpy.random.randn(n).astype(numpy.float32))
b gpu = cl array . to device (

ctx , queue, numpy.random.randn(n).astype(numpy.float32))

from pyopencl.elementwise import ElementwiseKernel
lin comb = ElementwiseKernel(ctx,

” float a, float ∗x, float b, float ∗y, float ∗z”,
”z[ i ] = a∗x[i ] + b∗y[i ]”)

c gpu = cl array . empty like (a gpu)
lin comb(5, a gpu, 6, b gpu, c gpu)

import numpy.linalg as la
assert la .norm((c gpu − (5∗a gpu+6∗b gpu)).get()) < 1e−5
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pyopencl.reduction: Reduction made easy

Example: A dot product calculation

from pyopencl.reduction import ReductionKernel
dot = ReductionKernel(ctx, dtype out=numpy.float32, neutral=”0”,

reduce expr=”a+b”, map expr=”x[i]∗y[i]”,
arguments=” global const float ∗x, global const float ∗y”)

import pyopencl.clrandom as cl rand
x = cl rand.rand(ctx , queue, (1000∗1000), dtype=numpy.float32)
y = cl rand.rand(ctx , queue, (1000∗1000), dtype=numpy.float32)

x dot y = dot(x, y). get()
x dot y cpu = numpy.dot(x.get(), y.get())
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pyopencl.scan: Scan made easy

Example: A cumulative sum computation

from pyopencl.scan import InclusiveScanKernel
knl = InclusiveScanKernel(ctx , np.int32 , ”a+b”)

n = 2∗∗20−2∗∗18+5
host data = np.random.randint(0, 10, n).astype(np.int32)
dev data = cl array . to device (queue, host data)

knl(dev data)
assert (dev data.get() == np.cumsum(host data, axis=0)).all()
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Questions?

?
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Measuring Performance

Writing high-performance Codes

Mindset: What is going to be the limiting factor?

Floating point throughput?

Memory bandwidth?

Cache sizes?

Benchmark the assumed limiting factor right away.

Evaluate

Know your peak throughputs (roughly)

Are you getting close?

Are you tracking the right limiting factor?
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Outline

1 Intro: Python, Numpy, GPUs, OpenCL

2 GPU Programming with PyOpenCL

3 OpenCL viewed from Python
Device Language
The OpenCL runtime
Synchronization
Extensions

4 OpenCL implementations
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OpenCL Device Language

OpenCL device language is C99, with these
differences:

+ Index getters
+ Memory space qualifiers
+ Vector data types
+ Many generic (‘overloaded’) math functions
including fast native ... varieties.
+ Synchronization
- Recursion
- malloc()
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Address Space Qualifiers

Type Per Access Latency
private work item R/W 1 or 1000
local group R/W 2
global grid R/W 1000 Cached?
constant grid R/O 1-1000 Cached
imagend t grid R(/W) 1000 Spatially cached

Important

Different types of memory are good at different types of access.
Successful algorithms combine many types’ strengths.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Address Space Qualifiers

Type Per Access Latency
private work item R/W 1 or 1000
local group R/W 2
global grid R/W 1000 Cached?
constant grid R/O 1-1000 Cached
imagend t grid R(/W) 1000 Spatially cached

Important

Different types of memory are good at different types of access.
Successful algorithms combine many types’ strengths.
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Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

How does computer memory work?

One (reading) memory transaction (simplified):

Processor Memory

CLK

R/W̄

A0..15

D0..15

Observation: Access (and addressing) happens
in bus-width-size “chunks”.
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Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

How does computer memory work?

One (reading) memory transaction (simplified):

Processor Memory

CLK

R/W̄

A0..15

D0..15

Observation: Access (and addressing) happens
in bus-width-size “chunks”.
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Global Memory

Rule of thumb

n = min

(
Bus width in bits

Word size in bits
,SIMD group size

)
work items access global memory simultaneously. Full utilization
only if all bits in bus transaction are useful.

· · ·
n words

OK: global variable[get global id(0)]

(Single transaction)
Bad: global variable[5+get global id(0)]

(Two transactions)
Bad: global variable[2*get global id(0)]

(Two transactions)
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Making sense of Global Memory

Consider the following examples:

List of XYZ vectors:

XXXX. . . YYYY. . . ZZZZ. . . (“SoA”)
XYZXYZXYZ. . . (“AoS”)

Accessing a row-major (C order) matrix

by rows
by columns
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Local Memory: Banking

0 4 8 12 16 20

· · ·

1 5 9 13 17 21

· · ·

2 6 10 14 18 22

· · ·

3 7 11 15 19 23

· · ·

Bank

Address

Work Item

0

1

2

3

OK: local variable[get local id(0)],
(Single cycle)
Bad: local variable[BANK COUNT*get local id(0)]

(BANK COUNT cycles)
OK: local variable[(BANK COUNT+1)*get local id(0)]

(Single cycle)
OK: local variable[ODD NUMBER*get local id(0)]

(Single cycle)
Bad: local variable[2*get local id(0)]

(BANK COUNT/2 cycles)
OK: local variable[f(get group id(0))]

(Broadcast–single cycle)

Example: Nvidia GT200 has 16 banks.
Work items access local memory in groups of 16.
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CL vector data types

floatn vec (n=1,2,3,4,8,16) (also for
double and integer types) Components:

vec.s012...abcdef (or xyzw)

vec.s3120 (Swizzling)

vec.s024 = (float3)(1,2,3);

(Lvalue, Literals)

Usage:

Elementwise operations (+,-,sin
(generic!),...)

floatn vloadn/vstoren(offset,
float *) (aligned!)

dot/distance

Using CPU implementation: One of the
sanest ways of using SSE/vector intrinsics!
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Outline

1 Intro: Python, Numpy, GPUs, OpenCL

2 GPU Programming with PyOpenCL

3 OpenCL viewed from Python
Device Language
The OpenCL runtime
Synchronization
Extensions

4 OpenCL implementations
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OpenCL Object Diagram
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Figure 2.1 - OpenCL UML Class Diagram 

Credit: Khronos Group
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CL “Platform”

“Platform”: a collection of devices, all from
the same vendor.

All devices in a platform use same CL
driver/implementation.

Multiple platforms can be used from one
program → ICD.

libOpenCL.so: ICD loader

/etc/OpenCL/vendors/somename.icd:
Plain text file with name of .so containing
CL implementation.
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CL “Compute Device”

CL Compute Devices:

CPUs, GPUs, accelerators, . . .

Anything that fits the programming model.

A processor die with an interface to off-chip
memory

Can get list of devices from platform.
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Contexts

context = cl.Context(devices=None | [dev1, dev2], dev type=None)
context = cl. create some context( interactive =True)

Spans one or more Devices

Create from device type or list of devices

See docs for cl.Platform, cl.Device

dev type: DEFAULT , ALL, CPU, GPU

Needed to. . .

. . . allocate Memory Objects

. . . create and build Programs

. . . host Command Queues

. . . execute Grids
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OpenCL: Command Queues

Host and Device run
asynchronously

Host submits to queue:

Computations
Memory Transfers
Sync primitives
. . .

Host can wait for
drained queue

Profiling

. . .
HostHost

DeviceDevice

Q
u

eu
e

1
Q

u
eu

e
1

Q
u

eu
e

2
Q

u
eu

e
2
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Command Queues and Events

queue = cl.CommandQueue(context, device=None,
properties =None | [(prop, value ),...])

Attached to single device

cl.command queue properties. . .

OUT OF ORDER EXEC MODE ENABLE:
Do not force sequential execution
PROFILING ENABLE:
Gather timing info

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Building Blocks in Action

import pyopencl as cl

platforms = cl. get platforms ()
my platform = platforms[0]
print my platform.vendor

devices = my platform.get devices ()
my device = devices [0]
print my device.name

ctx = cl.Context([my device])

cpq = cl.command queue properties
queue = cl.CommandQueue(ctx, my device, cpq.PROFILING ENABLE)

Simple version:

ctx2 = cl. create some context()
queue2 = cl.CommandQueue(ctx)
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Command Queues and Events

event = cl.enqueue XXX(queue, ..., wait for =[evt1, evt2 ])

Every enqueue operation returns an Event.

Also possible: Operation-less events
(“Markers”)

Wait (evt.wait()), polling

Specify dependencies

Every enqueue operation takes a list
arg wait for of dependencies.

Profile
event.profile.. . .

QUEUED, SUBMIT
START, END

(time stamp in ns)
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Profiling example

start event = cl.enqueue marker(queue)

# enqueue some commands

stop event = cl.enqueue marker(queue)
stop event .wait()

elapsed seconds = 1e−9∗(
start event . profile .END − start event. profile .END)

# −−− OR −−−

op event = knl(queue, global size , grp size , args ...)
op event.wait()
elapsed seconds = 1e−9∗(

op event. profile .END − op event.profile.START)
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Capturing Dependencies

B = f(A)
C = g(B)
E = f(C)
F = h(C)
G = g(E,F)
P = p(B)
Q = q(B)
R = r(G,P,Q)

A

C

B

E

G

F Q

P

R

h

r

g

rg

r

g

q

f

p

f

Switch queue to out-of-order
mode!

Specify as list of events using
wait for= optional keyword to
enqueue XXX.

Can also enqueue barrier.

Common use case:
Transmit/receive from other MPI
ranks.

Possible in hardware on Nv Fermi,
AMD Cayman: Submit parallel
work to increase machine use.

Not yet ubiquitously
implemented
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Memory Objects: Buffers

buf = cl. Buffer(context , flags , size =0, hostbuf=None)

Chunk of device memory

No type information: “Bag of bytes”

Observe: Not tied to device.
→ no fixed memory address
→ pointers do not survive kernel launches
→ movable between devices

flags:

READ ONLY/WRITE ONLY/READ WRITE

{ALLOC,COPY,USE} HOST PTR
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Memory Objects: Buffers

buf = cl. Buffer(context , flags , size =0, hostbuf=None)

COPY HOST PTR:

Use hostbuf as initial content of buffer

USE HOST PTR:

hostbuf is the buffer.

Caching in device memory is allowed.

ALLOC HOST PTR:

New host memory (unrelated to
hostbuf) is visible from device and host.
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Memory Objects: Buffers

buf = cl. Buffer(context , flags , size =0, hostbuf=None)

Specify hostbuf or size (or both)

hostbuf: Needs Python Buffer Interface
e.g. numpy.ndarray, str.

Important: Memory layout matters

Passed to device code as pointers
(e.g. float *, int *)

enqueue copy(queue, dest, src)

Can be mapped into host address space:
cl.MemoryMap.
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Command Queues and Buffers: A Crashy Puzzle

4 OK

(usually!)

a = numpy.random.rand(256∗∗3).astype(numpy.float32)
a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=a.nbytes)
cl .enqueue copy(queue, a dev, a,

is blocking =False)

6 Crash

a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=256∗∗3∗4)
cl .enqueue copy(queue, a dev,

numpy.random.rand(256∗∗3).astype(numpy.float32),
is blocking =False)

4 OK

a dev = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=256∗∗3∗4)
cl .enqueue copy(queue, a dev,

numpy.random.rand(256∗∗3).astype(numpy.float32),
is blocking =True)
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Programs and Kernels

prg = cl.Program(context, src)

src: OpenCL device code

Derivative of C99
Functions with kernel attribute
can be invoked from host

prg.build(options="",

devices=None)

kernel = prg.kernel name

kernel(queue,

(Gx ,Gy ,Gz), (Lx , Ly , Lz),
arg, ...,

wait for=None)
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Program Objects

kernel (queue, (Gx,Gy,Gz), (Sx,Sy,Sz), arg , ..., wait for =None)

arg may be:

None (a NULL pointer)

numpy sized scalars:
numpy.int64,numpy.float32,...

Anything with buffer interface:
numpy.ndarray, str

Buffer Objects

Also: cl.Image, cl.Sampler,
cl.LocalMemory
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Program Objects

kernel (queue, (Gx,Gy,Gz), (Sx,Sy,Sz), arg , ..., wait for =None)

Explicitly sized scalars:
6 Annoying, error-prone.

Better:
kernel.set scalar arg dtypes([

numpy.int32, None,

numpy.float32])

Use None for non-scalars.
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OpenCL Object Diagram
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Figure 2.1 - OpenCL UML Class Diagram 

Credit: Khronos Group
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Outline

1 Intro: Python, Numpy, GPUs, OpenCL

2 GPU Programming with PyOpenCL

3 OpenCL viewed from Python
Device Language
The OpenCL runtime
Synchronization
Extensions

4 OpenCL implementations
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Recap: Concurrency and Synchronization

GPUs have layers of concurrency.
Each layer has its synchronization primitives.

Intra-group:
barrier(...),
mem fence(...)

... =
CLK {LOCAL,GLOBAL} MEM FENCE

Inter-group:
Kernel launch

CPU-GPU:
Command queues, Events
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Synchronization between Groups

Golden Rule:

Results of the algorithm must be independent of the order in which
work groups are executed.

Consequences:

Work groups may read the same information from global
memory.

But: Two work groups may not validly write different things
to the same global memory.

Kernel launch serves as

Global barrier
Global memory fence
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Synchronization

What is a Barrier?
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Synchronization

What is a Memory Fence?

17

write 18
read

17
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Synchronization

What is a Memory Fence? An ordering restriction for memory
access.
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read
18
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Atomic Operations

Collaborative (inter-block) Global Memory Update:

Read Increment Write

Interruptible! Interruptible!

Atomic Global Memory Update:

Read Increment Write

Protected Protected

How?
atomic {add,inc,cmpxchg,. . . }(int *global, int value);
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Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA



Intro PyOpenCL OpenCL from Python Implementations Device Language Runtime Synchronization Extensions

Outline

1 Intro: Python, Numpy, GPUs, OpenCL

2 GPU Programming with PyOpenCL

3 OpenCL viewed from Python
Device Language
The OpenCL runtime
Synchronization
Extensions

4 OpenCL implementations
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Extensions: Future-proof CL

Similar extensions mechanism to
OpenGL.

Two mechanisms:

Runtime:

cl ext.h header
availability checkable via #ifdef

device.extensions

Device language:
#pragma OPENCL EXTENSION

name : enable

Important extension:

cl khr fp64

Vendor and ‘official’ extensions.
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Extension Example: cl ext migrate memobject

CL Memory Objects (Buffers,
Images) tied to context, not device

CL Standard: Implicit migration of
data to location of use

Compliant implementations are
allowed to store all data on host,
transfer out just for kernel

With migration extension:

Migration becomes schedulable,
takes part in command queue
More control over data locality

4 Supported by PyOpenCL
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Extension Example: cl ext device fission

Can partition a compute device

Equally
By name, counts
By affinity domain (Ln cache,
NUMA

Help avoid starvation of processes
that need a certain minimum
throughput.

Makes two-kernel
producer-consumer model feasible.

Otherwise: No guarantee of
progress!

Available on Intel, AMD
(CPU+GPU!)

4 Supported by PyOpenCL
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The Nvidia CL implementation

Targets only GPUs

Notes:

Nearly identical to CUDA

No native C-level JIT in CUDA (→
PyCUDA)

Page-locked memory:
Use CL MEM ALLOC HOST PTR.
(Careful: double meaning)

No linear memory texturing

CUDA device emulation mode deprecated
→ Use AMD CPU CL (faster, too!)
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The Apple CL implementation

Targets CPUs and GPUs

General notes:

Different header name
OpenCL/cl.h instead of CL/cl.h
Use -framework OpenCL for C
access.

Beware of imperfect compiler cache
implementation
(ignores include files)

CPU notes:

One work item per processor

GPU similar to hardware vendor
implementation.
(New: Intel w/ Sandy Bridge)
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The AMD CL implementation

Targets CPUs and GPUs (from both AMD and Nvidia)

GPU notes:

Wide SIMD groups (64)

VLIW4 (previously VLIW5)

very flop-heavy machine
→ ILP and explicit SIMD
Non-vector memory coalescing only on Cayman+

GCN: Vector and scalar unit

Move towards Nv-like programming model

CPU notes:

Many work items per processor (emulated)

cl amd printf

“APU”: CPU/GPU integration not very tight yet
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The Intel CL implementation

CPUs now, GPUs with Ivy Bridge+

CPU notes:

Good vectorizing compiler

Only implementation of out-of-order queues
for now

Based on Intel TBB

GPU notes:

Flexible design: SIMDm VLIWn

Lots of fixed-function hardware

Last-level Cache (LLC) integrated between
CPU and GPU

®
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The MOSIX Virtual CL implementation

Aggregates all CL devices on a cluster into a
single platform

Looks like a “regular” CL implementation to
the user

Obvious scaling limits, but useful if the
application is right

Just heard from author: PyOpenCL
supported as of version 1.10

Aggregates communication to avoid network
round-trips
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Questions?

?
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