
Easy, Effective, Efficient:
GPU Programming in Python
with PyOpenCL and PyCUDA
ANDREAS KLÖCKNER
Courant Institute of Mathematical Sciences, New York University, USA

Why this workshop?
Throughput-oriented GPU-like architectures are firmly es-
tablished as a way to gain much performance over latency-
oriented CPU-like architectures for a significant number of
computational problems. Programming these machines is–
and will be, for the foreseeable future–fraught with some
extra complexity compared to sequential programs. This
workshop discusses one approach to managing this complex-
ity.

Scripting languages are in many ways polar opposites to
GPUs. GPUs are highly parallel, subject to hardware sub-
tleties, and designed for maximum throughput. On the other
hand, scripting languages (such as Python) favor ease of use
over computational speed and do not generally emphasize
parallelism. PyOpenCL is a package that joins the two to-
gether. This course aims to show you that by combining
these opposites, a programming environment is created that
is greater than just the sum of its two parts. One key to in-
creasing programmer productivity in this setting is the easy
application of run-time code generation (RTCG). The course
will cover this and other techniques in detail.

PyOpenCL can be used in a large number of roles, for ex-
ample as a prototyping and exploration tool, to help with
optimization, as a bridge to the GPU for existing legacy
codes (in Fortran, C, or other languages), or, perhaps most
excitingly, to support an unconventional hybrid way of writ-
ing high-performance codes, in which a high-level controller
generates and supervises the execution of low-level (but high-
performance) computation tasks to be carried out on varied
GPU- or GPU-based computational infrastructure. You will
learn about each of these roles and how to get the most out of
PyOpenCL (and also PyCUDA). In doing so, you will also
gain familiarity with the OpenCL computation interface as
well as a number of GPU (and CPU) hardware architectures.

Sponsor: ITMAN and DCAMM is sponsoring some refresh-
ments for participants of the workshop during the day.

Deadline for signing up per E-mail is August 10, 2011 and
is free of charge. There is limited capacity in the Lab so sign
up early is recommended.

About the workshop
The workshop will take place in three sessions, each about
an hour long, with practical lab sessions in between.

Introduction

• Intro to OpenCL

• (Brief) Intro to Python, numpy (if necessary)

• The OpenCL Universe: CL on CPUs and various
GPUs

• PyOpenCL: OpenCL Scripting Mechanics for GPU
and multi-core

Code Generation, Hybrid codes

• Motivation for Hybrid Codes: GPUs and Scripting

• GPU arrays, custom element-wise and reductive oper-
ations

• Run time code generation: How and Why

• Advanced code generation: Templating

• Heuristics and search patterns for automated tuning,
performance measurement

Perspectives, Applications

• PyOpenCL and mpi4py

• Hybrid Development: Interfacing Python with Fortran
and C/C++

• A brief look at PyCUDA

• An example: Gas dynamics and EM on complex ge-
ometries

Signing up for the workshop is required and is free of charge.

Prerequisites: This course will offer a brief introduction to
GPU architecture and programming. Previous exposure to
the topic will be helpful.

Registration: Register for the workshop by E-mail to Assoc.
Prof. Allan P. Engsig-Karup (apek@imm.dtu.dk), Section
for Scientific Computing, Department of Informatics and
Mathematical Modelling.

August 17, 2011 · 9:00-17:00 · Building 305 R017 (VR-Lab)



Detailed Program (Tentative)
9:00 – 11:00 Introductory Session

• Python, numpy, GPUs, OpenCL

• Basic PyOpenCL

• Contexts, Buffers, Events and such: A tour of the PyOpenCL runtime

• More advanced PyOpenCL usage

• The OpenCL device language

• PyOpenCL: What comes in the box

• Notes on CL implementations

11:00 – 11:10 Break

11:10 – 11:45 Lab Session I (intro)

• Python, numpy recap

• Simple PyOpenCL practice

• Elementary Benchmarking

• Microbenchmarking

11:45 – 13:00 Lunch

(If you would like to maximize lab time, we suggest bringing lunch. There is an area with tables and
chairs near the lab. Andreas will be available to help in the lab during lunch hours.)

13:00 – 13:30 Lab Session I cont’d

13:30 – 15:30 Advanced Session

• The mechanics behind PyOpenCL

• Run time code generation: How and Why, Templating

• Automated tuning

• mpi4py and PyOpenCL

• Hybrid Development: Interfacing Python with Fortran and C/C++

• A brief look at PyCUDA

• An example: Gas dynamics and EM on complex geometries

15:30 – 15:40 Break

15:40 – 18:00 Lab Session II (advanced)

• TBD


