Very fast simulation of nonlinear water waves
in very large numerical wave tanks on
affordable graphics cards

By Allan P. Engsig-Karup,
Morten Gorm Madsen and Stefan L. Glimberg
DTU Informatics

Workshop on “GPU computing today and tomorrow”

MHaPU|ab Kes Lyngby, DTU,Aug 18,201 1.

DTU Informatics

T

—
—

i

g e e -

Requirements

7

General requirements

v Ability to estimate or predict wave kinematics and wave loads on structures
v Estimation of influence of sea floor on wave transformations

v Accurate representation of wave propagation over long distances and times
v Numerical basis for a tool should be generally applicable and reliable

(v) Possibility to simulate waves in realistic structural settings

Current research directions

v Development of an efficient and scalable parallel algorithm for the numerical tool

v Utilize many-core hardware to maximize performance for fast analysis and large problem sizes
- New robust numerical engineering tools for wave-structure interaction

(floating wave-energy devices, windmill foundations, etc.)

Unified model for unsteady potential flow

Kinematic and dynamic free surface conditions

om = —-Vn- ng +w(1+Vn-Vn),
~ 1 . .
o = —gn—7(Vé-Vé— w1+ vy vi))
Laplace problem
¢ — é’ Z = 1,
V2¢+8ZZ¢:O, —h<z<n,
Vertical free surface velocity w Free surface
» il “‘\t ,
~ SWEO Al ¢,/ - X
W=0z¢, Z=1 \/

Lateral boundary conditions (net-flux conditions)

Bottom

: ~
n-Vo¢+ 0,6 = g(x), X e oQ 4 T T T TR e

OceanWave3D

- 2 wave model for
coastal engineering

i

Case study

Can we use the new GPU technology and programming
models to leverage performance over existing CPU
applications!?

Proof-of-concept case study

® Develop new massively parallel algorithm for an
engineering application that can utilize GPU
architectures

® Enable fast engineering analysis of fully nonlinear waves
at large scales by implementation on affordable
commodity hardware

® Find out how fast can we do robust (real-time?)

computer-based analysis and experiments with
OceanWave3D model

OceanWave3 D

Courtesy of The Hydraulics and Maritime Research Centre (HMRC) at University College Cork

Numerical method
An accurate and robust arbitrary-order finite difference method.

Computational bottleneck problem (Laplace)
Efficient and scalable iterative solution of large sparse linear system every
time step.

=> Entire algorithm is explicit.
=> Algorithmic efficiency for both linear and nonlinear simulations established.

Can we do better?

Hardware characteristics

Host CPU) Host Device
Should be capable of acting as a task manager for
any hardware accelerator device (GPU) connected.
Kernel
Device (GPU) 1

A device GPU acts as a co-processor to the host
CPU and is often used for compute-intensive tasks.

Potential performance bottleneck: data-transfer

- PCle x16 Gen 2 link bandwidth
~5 GB/s Kernel

- GPU on-chip bandwidth
<192 GB/s

Block (1, 1)

i

lterative methods

Summary of development and analysis of past work on
the efficient solution of the model equations

Contributions 2D | 3D |Iterative method| Accuracy Storage
Li & Fleming (1997) \/ \/ Multigrid (MG) 2nd Low
Bingham & Zhang (2006) \/ GMRES+LU Flexible High
E?ngjggééa{;gbg;”gham V4 V' | GMRestMG Flexible High
Engsig-Karup (2010) \/ \/ Defeffﬁgg“”” Flexible Low

- Multigrid method is O(n), robust, fast convergence for 2nd order, is memory-limited

- The Standard GMRES method has increasing workload per iteration, not memory-limited
- DC method, is memory-limited and requires less global synchronization

- DC and GMRES methods, robust and require efficient preconditioning to be fast

Defect Correction method

i

it = M 4 slk s = MY b - ABH)), £ =0,1,2,..

Good initial guess

(last solve) Sparse matrix-vector

product (matrix-free and minimal storage)

Algorifthm 1: Defect £orrection Method for solution of Az = b

; gkfose 2 Preconditioning problem ~ /* initial guess */
5 repeat /- solve cheaply and efficiently

4 rikl = b — Azl¥] /* high-order defect */
5 Solve M§lFl = —plkl /* preconditioning problem */
6 pl 1] = gkl 5[’“]& /* defect correction */
7 | k=k+1 Error estimator (gather step)

8 until no convergence and k < mazimum iterations ;

\Stop criteria (efficiency)
- Algorithm suitable for mixed precision calculations
- Two-step recurrence basis for minimal memory footprint

Memory [MB]

OceanWave3D Scalability
CPU GPU

— 4
------ ggﬁﬁgghng 10

10° 103 I

% 102 i
100k é\ 101 | i .

i 0l _|~-double

! é) 10 ~ |a-single
02| 10~} % -0

: 10-2 ; ; ; ; ; ’

! 10 10* 10° 10%° 107 10% 10°
o'k Problem size [grid points]

i Implementation choices matters

I - Mapping to GPU resulted in a reduction of more
10] el than x 10 in memory footprint

N - from 5.000.000 up to 50.000.000 degrees of

freedom in Laplace problem (double precision)
- Less than 4GB RAM required

Throughput performance

1 —

dl —— CPU
) —O— Quadro FX 5800 (gaming)

100+ —A— GeForce GTX 480 (gaming)

= | —3— C2050 w/ECC

= —Q— C2050 wo/ECC

Fo!

£ Remarks:

10_2 - Scalable work effort

- Good performance across
architectures

10 3 3 |4 iiiiiiii5i iiiiiﬁii6i iiiiiﬁii7i oLl 8
10 10 10 10 10 10
n

(a) Absolute timings.

- Throughput performance curves a means for evaluating and confirming
performance and capturing current state-of-the-art in practice.

- Without these difficult to make fair comparison between different
models

Engsig-Karup, Allan; Madsen, Morten; Glimberg, Stefan. A massively parallel GPU-accelerated model for analysis of fully nonlinear free
surface waves. Journal: International Journal for Numerical Methods in Fluids, 2011.

Relative speedup

——A— GeForce GTX 480 (gaming)
—O— Quadro FX 5800 (gaming)

50

40 —i— C2050 w/ECC
B —— C2050 wo/ECC
_§* 30r - Mapped algorithm to GPU
D | faster than same algorithm
& 200 on CPU for all problem sizes

] of interest

| - Better performance the
T @ | larger the problem,i.e.

oL 7 . .] speedupwhereitis needed
1035 104 10° 10 107 10%8 - Gaming card beats high-end

n HPC GPU processors!
(b) Speedup relative to CPU (single thread) code in double

precision arithmetic.

Engsig-Karup, Allan; Madsen, Morten; Glimberg, Stefan. A massively parallel GPU-accelerated model for analysis of fully nonlinear free
surface waves. Journal: International Journal for Numerical Methods in Fluids, 2011.

Precision requirements!

Most applications today use double precision maths to minimize
accumulation of round-off errors.

® How much precision do we really need in computations?
® Can we trade precision for speed?

® s it feasible for practical computations?

If single precision math can be used in parts of code, it is
possible to

® Half the size of data-transfers

® For some architectures single precision operations can be
processed at more than twice the speed, e.g. GPUs.

Free lunch: x2?

Single precision vs. double precision

Single precision Double precision

107° | : \\%_,\ ; 10 |

—_
| (@)
=
=
L

—— Residual error, r Sh—_—
—— Absolute error, r
- — = Truncation Error, T.E
10 Rel. Residual error I 10
—— Est. error
----- Optimal
Algebraic error
0] 5 10 15 20
Iterations

0 2 4 6 8 10 12
lterations

Deep water, SF waves,
kh=6.14, H/L=90% , Nx=15, Nz=9, 6th order stencils

- Overall accuracy can be maintained in solution of Laplace problem

Single precision vs. double precision

Without filtering With filtering

Single
Double

Single
Double

0 210 410 6.0 8.0 100 0 210 410 610 810
YT YT

Parameters: Intermediate water, SF waves, Direct solution

kh=1, H/L=90% , Nx=15, Nz=9, 6th order stencils

SG(6,10) filter strategy every 10 time step

- Errors tends to accumulate faster in single precision without stabilization
- Control at the expense of a mild inexpensive filtering strategy

100

OceanWave3D model

10° 10 105 105 107 108
n

Figure 3. Speedup in scalability tests for C2050 with

ECC for a single versus double precision arithmetic

comparison. Single precision with ECC (—4—) and

without ECC (—M-). Iterative solver DC+MG-

Z1.GS-V(1,1) and sixth order spatial discretization
have been employed.

Preliminary tests in SP

Total GPU vs. CPU Speedup

C2050 :x57 (measured)
GTX 480 : x60 (estimated)
For sufficiently large problems

OceanWave3D code for GPUs not
considered fully optimized.

Brute-force auto-tuning of most
expensive kernels level have been
used.

No free lunch yet!
Expected a factor x2 when using
single over double precision...

Further optimization and auto-tuning of existing implementation
could improve efficiency further

Investigate means for leveraging productivity in code development
(development cost is often overlooked and not negligible)

Replace CUDA with OpenCL for better portability across hardware
platforms, e.g. execution utilizing both CPUs and GPUs.

Enable use of multi-GPU systems to efficiently solve even larger
problems.

Real-time computations and analysis requires fast algorithms,
improvements in hardware and implementation/optimization effort.

General-purpose computing

= ==\ Lo ‘!
;"'»‘ -

Nonlin. "—-7 % GPU-accelerated Boundary Realtime free surface fluid ANDSolver Acceleration of a Finite-
Waves ~nt Method and Vort... simulation and visuali... Difference WENO Scheme fo...

’-ﬂ

‘-‘,

|

Modeling Rotor Wakes with a Simulation and Visualization Multiphase flow in porous
Hybrid OVERFLOW-Vortex... of the Saint-VenantS... media

?"1

Lagrangian Stochastic NeuroSolutions CUDA Add-on Incompressible Flow Lattice-Boltzmann Simulation GPU Accelerated Tandem
Particle Model using Large- Computations on the NCSA of the Shallow-Water ... Traversal of Blocked Boundi...
E.. 20 x 50 x Linco... 8x 8y

Many different applications from science and engineering show-cased in Nyvidia’s
CUDA zone.All applications written in the CUDA framework after 2007!

Questions

Contact info

Allan P. Engsig-Karup

E-mail: apek@imm.dtu.dk

Associate Professor in Scientific Computing
Department of Mathematics and Modeling
Technical University of Denmark

