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Introduction
The construction of surrogate models is very important as a mean of acceleration in computational methods

for uncertainty quantification (UQ). When the forward model is particularly expensive compared to the

accuracy loss due to the use of a surrogate – as for example in computational fluid dynamics (CFD) – the

latter can be used for the forward propagation of uncertainty [7] and the solution of inference problems [4].

Figure 1: TT-cross
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Problem setting
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assume f is a computationally expensive func-
tion. Let ⇠ 2 [a, b]

d be random variables entering
the formulation of a parametric problem. In the
context of UQ, we might want to:
•Compute relevant statistics
• Inquire the sensitivity of f to ⇠

• Infer the distribution of ⇠
In most real problems, these goals require an
high number of evaluations of f . Often the con-
struction of the surrogate and its evaluation in
place of the original f provides a good payoff.

Tensor-train decomposition
Let f be evaluated at all points on a tensor grid
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Let A = f (X ).

Discrete tensor-train approximation [5]
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The construction can be built through the evalu-
ation of f on the most important fibers (Fig. 1),
detected using the TT-cross algorithm [6].
For example, let f (x, y) = 1

x+y+1

sin(4⇡(x + y))

Figure 2: TT-cross: selection of fibers.

•Existence of low-rank best approximation
•Memory complexity: linear in d

•Computational complexity: linear in d

It tackles the curse of dimensionality.
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Functional TT-decomposition
Using the spectral theory on (non-symmetric)
Hilbert-Schmidt kernels, we can construct
a functional counterpart of the discrete TT-
approximation.

Functional tensor-train approximation [1]
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composition of Hermitian integral operators de-
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The latter statement can be relaxed:

FTT-decomposition and Sobolev spaces [1]
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Spectral TT-decomposition
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STT-Projection
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Lagrange polynomials:

STT-Interpolation
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where L

(n) is the Lagrange interpolation matrix.

Conclusions
•Tackles the curse of dimensionality.
•Spectral convergence on smooth functions.

Ongoing works
•Anisotropic heterogeneous adaptivity.
•Ordering problem.
•Application in the fields of coastal engineering

[2, 3] and geoscience.

Numerical Examples
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The method shows spectral
convergence on both the tests,
even on f

2

, when there is no
analytical low-rank represen-
tation.
For d = 5, we compare the
non-adaptive STT-Projection
with the anisotropically adap-
tive Smolyak Sparse Grid.

Ordering problem
TT and STT are negatively
affected by the wrong or-
dering of the dimensions,
leading to an increased
computational cost and se-
vere loss of accuracy.
We propose a strategy to
find a good ordering.

(a) Vicinity matrix (b) Undirected graph (c) Hierarchical clustering

We construct a vicinity matrix based on the 2nd order ranks of the
tensor. We then need to solve the Traveling Salesman Problem.
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