Spectral tensor-train decomposition for low-rank surrogate models

Daniele Bigoni¹, Allan P. Engsig-Karup¹, Youssef M. Marzouk²

¹Department of Applied Mathematics and Computer Science, Technical University of Denmark
²Department of Aeronautics and Astronautics, Massachusetts Institute of Technology

Corresponding author: dabi@dtu.dk

Introduction

The construction of surrogate models is very important as a mean of acceleration in computational methods for uncertainty quantification (UQ). When the forward model is particularly expensive compared to the accuracy loss due to the use of a surrogate – as for example in computational fluid dynamics (CFD) – the latter can be used for the forward propagation of uncertainty [7] and the solution of inference problems [4].

Problem setting

We consider \(f \in L^2(\mathbb{R}^d) \), where \(d \gg 1 \) and assume \(f \) is a computationally expensive function. Let \(\xi \in [0, b) \) be random variables entering the formulation of a parametric problem. In the context of UQ, we might want to:

- Compute relevant statistics
- Inquire the sensitivity of \(f \) to \(\xi \)
- Infer the distribution of \(\xi \)

In most real problems, these goals require an high number of evaluations of \(f \). Often the construction of the surrogate and its evaluation in place of the original \(f \) provides a good payoff.

Tensor-train decomposition

Let \(f \) be evaluated at all points on a tensor grid \(\mathcal{X} = \bigotimes_{j=1}^{d} x_j \), where \(x_j = (r_j)^0_1 \) for \(j \in [1, d] \). Let \(\mathcal{A} = f(\mathcal{X}) \).

Discrete tensor-train approximation [5]

Let \(r = (r_1, \ldots, r_d) \), let \(\mathcal{A}_{TT} \) be s.t.

\[
\mathcal{A}_{TT} = \bigotimes_{i=1}^{d} G_i(a_i, \alpha_i, \sigma_i) = \bigotimes_{i=1}^{d} \mathcal{G}_i(\alpha_i, \sigma_i)
\]

The construction can be built through the evaluation of \(f \) on the most important fibers (Fig. 1), detected using the TT-Cross algorithm [6]. For example, let \(f(x,y) = \frac{1}{\pi} \arctan(xy) \).

Figure 1: TT-cross

Functional TT-decomposition

Using the spectral theory on (non-symmetric) Hilbert-Schmidt kernels, we can construct a functional counterpart of the discrete TT-approximation.

Functional tensor-train approximation [1]

For \(r = (r_1, \ldots, r_d) \), let \(f_{TT} \) be s.t.

\[
f(x) = f_{TT}(x) = \sum_{\alpha_i=0}^{n_i} \gamma_i(a_i, \alpha_i, x_i) \quad \text{for all } x \in [0, b)^d \]

where \(\gamma_i(a_i, \alpha_i, x_i) \) are orthogonal (see [1]).

\(f_{TT} \) is constructed through the eigenvalue decomposition of Hermitian integral operators defined in terms of \(f \). It can be proved that [1]:

- for fixed \(r \), \(f_{TT} \) is optimal
- \(\gamma_i(a_i, \alpha_i, x_i) \in C^1(\mathbb{R}) \) for all \(i, \alpha_i \).

The latter statement can be relaxed:

Spectral TT-decomposition

Let \(P : L^2(\mathbb{R}^d) \rightarrow \text{span} (\phi_i^{(N)}) \) where \(\phi_i^{(N)} \) are orthonormal polynomials:

STT-Projection

\[
P_{STT} = \sum_{i=1}^{N} \phi_i^{(N)} f_{TT}(x) \quad \text{for all } x \in [0, b)^d
\]

STT-Interpolation

\[
P_{STT} = \sum_{i=1}^{N} \phi_i^{(N)} f_{TT}(x) \quad \text{for all } x \in [0, b)^d
\]

where \(L^2 \) is the Lagrange interpolation matrix.

Conclusions

- Tackles the curse of dimensionality.
- Spectral convergence on smooth functions.

Ongoing works

- Anisotropic heterogeneous adaptivity.
- Ordering problem.
- Application in the fields of coastal engineering [2, 3] and geoscience.

Numerical Examples

Ordering problem

TT and STT are negatively affected by the wrong ordering of the dimensions, leading to an increased computational cost and severe loss of accuracy. We propose a strategy to find a good ordering.

Gonz functions: \(f_{TT}(x) = \cos(\pi x) \), \(f_{TT}(x) = \sin(\pi x) \), \(f_{TT}(x) = \cos(\pi x) + \sin(\pi x) \)

The method shows spectral convergence on both the tests, even on \(f_{TT} \), there is no analytical low-rank representation.

For \(d = 5 \), we compare the non-adaptive STT-Projection with the anisotropically adaptive Smolyak Sparse Grid.

References