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Introduction

The construction of surrogate models is very important as a mean of acceleration in computational methods
for uncertainty quantification (UQ). When the forward model is particularly expensive compared to the
accuracy loss due to the use of a surrogate — as for example in computational fluid dynamics (CFD) — the
latter can be used for the forward propagation of uncertainty [7] and the solution of inference problems [4].

Problem setting

We consider f € L?*(|a,b]?), where d > 1 and
assume f is a computationally expensive func-
tion. Let € € [a, b be random variables entering
the formulation of a parametric problem. In the
context of UQ, we might want to:

e Compute relevant statistics
¢ Inquire the sensitivity of f to &
e Infer the distribution of &

In most real problems, these goals require an
high number of evaluations of f. Often the con-
struction of the surrogate and its evaluation in
place of the original f provides a good payoff.

Tensor-train decomposition

Let f be evaluated at all points on a tensor grid
X = @) x;, where x; = (z;);_, for j € [1,d].
Let A= f(X).

Discrete tensor-train approximation [5]

Forr = (1, Ty« s Td—1, 1), let A;r be s.t.
A(il, . ,id) — ATT(il, . ,id) + gTT(ily . ,id)
Arr= > Gilag, iy, 1) ... Galag_1, iq, @)

The construction can be built through the evalu-
ation of f on the most important fibers (Fig. 1),
detected using the TT-cross algorithm [6].

For example, let f(z,y) = oy sin(dr(z +y))
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Figure 2: TT-cross: selection of fibers.

¢ Existence of low-rank best approximation
e Memory complexity: linear in d

e Computational complexity: linear in d

It tackles the curse of dimensionality.
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Functional TI-decomposition

Using the spectral theory on (non-symmetric)
Hilbert-Schmidt kernels, we can construct
a functional counterpart of the discrete TT-
approximation.

Functional tensor-train approximation [1]

Forr=(1,r,...,74.1,1), let frr be s.t.

f(x) = frr(x) + Rrr(x)

r

fTT(X): Z 71((340,%1,041)°°°%z(04d—1,$d7 Oéd)

where v;(«;_1, -, ;) are orthogonal (see [1]).

frr 1s constructed through the eigenvalue de-
composition of Hermitian integral operators de-
fined in terms of f. It can be proved that [1]:

o for fixed r, frr is optimal
F _ exists and

oif IS continuous, then

0Lz
Vilag_1, -, ap) € Cﬁk(]k) for all k&, a1 and «.

The latter statement can be relaxed:

Let I ¢ R? be closed and bounded, and f &
L*(I) be a Holder continuous function with ex-
ponent > 1/2 such that f € H*(I). Then frr is
such that v;(a;1,-, a;) € HE (I;) for all j, o
and Q.-

Numerical Examples
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Figure 1: TT-cross

Software: http://www.compute.dtu.dk/~dabi/
Python PyPi: TensorToolbox

Spectral TT-decomposition

Let P : L2(I) — span ({®;};.) where {®;};" are
orthogonal polynomials:

N
Pnfrr =) &P;
i—0

Let [Ty : L(I) — span ({li}ﬁo), {1}V, being the
Lagrange polynomials:

where L™ is the Lagrange interpolation matrix.
Conclusions

e Tackles the curse of dimensionality.
e Spectral convergence on smooth functions.

Ongoing works

¢ Anisotropic heterogeneous adaptivity.
e Ordering problem.

e Application in the fields of coastal engineering
[2, 3] and geoscience.
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Genz functions:

d
fi(x) = cos (27711}1 + Z cz-:ci)

1=1

] —(d+1)
fQ(X) — (1 + Z C@'ZIZ};)
1=1

10-14
102

# func. eval

Oscillatory

# func. eval

Corner Peak

The method shows spectral
convergence on both the tests,
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even on f,, when there is no
analytical low-rank represen-
tation.

For d = 5, we compare the
non-adaptive STT-Projection
with the anisotropically adap-
tive Smolyak Sparse Grid.
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Ordering problem

TT and STT are negatively
affected by the wrong or-
dering of the dimensions,
leading to an increased
computational cost and se- ——
vere loss of accuracy. (a) Vicinity matrix
We propose a strategy to
find a good ordering.
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(c) Hierarchical clustering

(b) Undirected graph

We construct a vicinity matrix based on the 2nd order ranks of the
tensor. We then need to solve the Traveling Salesman Problem.
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