Final Project:
Flexible-order finite difference computations

Ph.D. Course 2010:
Scientific GPU Computing

This projects aims at familiarizing yourself with the parallel computing
using CUDA on a heterogenous CPU-GPU system by a practical implemen-
tation of finite difference approximations of derivatives of a function.

Consider the general formula for flexible-order finite difference approxi-
mations of the ¢’th derivative of a function f(z) in one space dimension

o1f
TIe Y eflaien) (1

n—=—o

where ¢, is finite difference coefficients which can be computed using the
supplied C function fdcoeffF.c and the function f(x) is evaluated at a
discrete grid ; = hi, © = 0,1, ..., N — 1, with uniform spacing between grid
points of size h = ﬁ « and (8 are integer values indicating the number
of points, respectively, to the left and right of the expansion point x;. Take
a = (for all interior points sufficiently far from the boundaries. Near the
domain boundaries at zg and x_1 the stencils will need to be off-centered.

e Familiarize yourself with the supplied sequential code for computing
approximations of the ¢’th derivative on the discrete grid with N spa-
tial points in one space dimension on a CPU.

e Do an analysis of how you can balance data-transfer and thread ex-
ecution to maximize throughput performance for a given number of
grid points N.

e Write a parallel version of the sequential code using the CUDA pro-
gramming model to investigate the potential for speeding up the com-
putations.

e Carry out performance tests to test and demonstrate how throughput
can be maximized for various sizes of stencils with rank r = a+3+1
for sizes r = 3,5,7,.... For example, choose N = 640000 in your
tests. Reports timings (speedup), throughput (GFLOPS/s) and other
interesting performance indicators.

e If time permits, extend the parallel code to be able to compute the
same one-dimensional derivative approximation for each point on a
grid in two space dimensions (z;,y;) = (ih, jh), 7 =0,1,...,N.

The answers should be given in a short report containing your analysis,
results and conclusions. The final code should be included in an appendix
and include sufficient comments to understand your program code.

Scientific Computing Section, DTU Informatics, Kgs.-Lyngby, Denmark.

