Final Project:
Flexible-order finite difference computations

Ph.D. Course 2010:
Scientific GPU Computing

This projects aims at familiarizing yourself with the parallel computing
using CUDA on a heterogenous CPU-GPU system by a practical implemen-
tation of finite difference approximations of derivatives of a function.

Consider the general formula for flexible-order finite difference approxi-
mations of the ¢’th derivative of a function f(z) in one space dimension
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where ¢, is finite difference coefficients which can be computed using the
supplied C function fdcoeffF.c and the function f(x) is evaluated at a
discrete grid ; = hi, © = 0,1, ..., N — 1, with uniform spacing between grid
points of size h = ﬁ « and (8 are integer values indicating the number
of points, respectively, to the left and right of the expansion point x;. Take
a = ( for all interior points sufficiently far from the boundaries. Near the
domain boundaries at zg and x_1 the stencils will need to be off-centered.

e Familiarize yourself with the supplied sequential code for computing
approximations of the ¢’th derivative on the discrete grid with N spa-
tial points in one space dimension on a CPU.

e Do an analysis of how you can balance data-transfer and thread ex-
ecution to maximize throughput performance for a given number of
grid points N.

e Write a parallel version of the sequential code using the CUDA pro-
gramming model to investigate the potential for speeding up the com-
putations.

e Carry out performance tests to test and demonstrate how throughput
can be maximized for various sizes of stencils with rank r = a+3+1
for sizes r = 3,5,7,.... For example, choose N = 640000 in your
tests. Reports timings (speedup), throughput (GFLOPS/s) and other
interesting performance indicators.

e If time permits, extend the parallel code to be able to compute the
same one-dimensional derivative approximation for each point on a
grid in two space dimensions (z;,y;) = (ih, jh), 7 =0,1,...,N.

The answers should be given in a short report containing your analysis,
results and conclusions. The final code should be included in an appendix
and include sufficient comments to understand your program code.
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