
Ph D School inPh.D. School in 
Scientific GPU Computingp g

Hendrik Lensch

Ph.D. Summer School – Scientific GPU Computing 



CUDA Programming Model

Ph.D. Summer School – Scientific GPU Computing 



GeForce 8800
16 highly threaded SM’s, >128 FPU’s, 367 GFLOPS, 768 MB DRAM, 86.4 

GB/S Mem BW, 4GB/S BW to CPU
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Thread Batching: Grids and Blocks
• A kernel is executed as a grid of 

thread blocks
– All threads share data memory
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New Stuff
• Function Quantifiers

– __device__ callable on the GPU from the GPU
– __global__ callable on the GPU from the CPU
– __host__ callable on the CPU from the CPU

• Variable Quantifiers• Variable Quantifiers
– __device__ global memory on the GPU
– __constant__ constant memory on the GPU

h d bl k th GPU– __shared__ shared per-block memory on the GPU

• Built-in Variables
i di i f id d bl k i– gridDim, blockDim gives dimensions of grids and blocks in 

kernel
– blockIdx, threadIdx gives index of block and thread in 

kernel
• Built-in Vector Types

float2 float3 float4 etc
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CUDA Function Declarations
Executed 

on the:
Only callable 

from the:on the: from the:

__device__ float DeviceFunc() device device

__global__ void  KernelFunc() device host

__host__ float HostFunc() host host

• __global__ defines a kernel function, must return void

• __device__ and __host__ can be used together
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Calling a Kernel Function – Thread Creation
• A kernel function must be called with an execution 

configuration:

__global__ void KernelFunc(...);
dim3 DimGrid(100, 50);    // 5000 thread blocks 
dim3 DimBlock(4, 8, 8);   // 256 threads per block 
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid DimBlock SharedMemBytes >>>( );KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);
cudaThreadSynchronize(); 

• Any call to a kernel function is asynchronous from 
CUDA 1.0 on, explicit sync needed for blocking

• Need to synchronize/ wait for the execution to end:
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cudaThreadSynchronize()



Cuda Utility Functions
• Use them to hunt bugs more easily!
• It is so easy to start a kernel that does not do anything ; (• It is so easy to start a kernel that does not do anything ;-(
• You better want to know if the device memroy is really 

allocated, if the kernel is called or not. 

CUDA SAFE CALL( cudaMalloc( &devData size ) );CUDA_SAFE_CALL( cudaMalloc( &devData, size ) );
…
kernel<<< 400234, 1024 >>>(); 
CUT CHECK ERROR(“k l f il d\ ")CUT_CHECK_ERROR(“kernel failed\n");
CUDA_SAFE_CALL( cudaThreadSynchronize() ); 
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Principle Mode of Cuda Programming

1. Upload data to GPUp
– various different ways
– try to minimize this upload

2 E t th k l2. Execute the kernel
– each thread typically produces one output element 

(the most easy way of thinking about parallelism)
3. Download and analyze the results

– one can distill results down to a single number on the GPU
programming effort might be reduced if downloading the results of– programming effort might be reduced if downloading the results of 
all threads, computing a final aggregation on the CPU
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Allocation&Up/Download of Data
• allocation (standard memory)

float* devData; 
d M ll ( ( id**) d D t El t * i f(fl t) )cudaMalloc( (void**)&devData, nElements * sizeof(float) );

…
cudaFree( devData ); 

• upload/download
fl * h fl [i i ]float* hostData = new float[imgsize];
// upload
cudaMemcpy(devData,hostData,size,cudaMemcpyHostToDevice);

// download
cudaMemcpy(hostData,devData,size,cudaMemcpyDeviceToHost);
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CUDA Example
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Simple Example: Gamma Correction
• 2000x3500 pixels
• for each color channel

– c = pow(c,0.8)

compute w/o Cuda

Ph.D. Summer School – Scientific GPU Computing 

compute w/o Cuda



First steps
• locate nvcc

– nvcc –V
– release 2.0

l t d dk• locate cuda_sdk

• make your own project folder• make your own project folder

• compile with: nvcc –o gamma o –c gamma cu• compile with: nvcc –o gamma.o –c gamma.cu
• link with (if necessary): g++ -o gamma.o
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First Steps
• cuda toolkit: 

/opt/cuda

• cuda sdk: 
/ / //opt/cuda/sdk

• in your shell:• in your shell: 
export CUDA_INSTALL_PATH=“/opt/cuda”
export CUDA SDK DIR=“/opt/cuda/sdk”p _ _ p
export PATH=“/opt/cuda/open64/bin/:$PATH”

tar –xzf excercise01.tar.gz
cd gamma
make
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make
./testGamma vase.ppm 0.5 1 out.ppm



Subdividing into Blocks&Threads
• in this example

– each thread computes the output of a single pixel

w

– each block is one pixel high (1xMAX_THREADS)
– multiple blocks span each line of the image

block(0,h-1) block(1,h-1) block(2,h-1)

h

block(0,1) block(1,1) block(2,1)
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Subdividing into Blocks&Threads
• in this example

– 1D block of threads: dim threads(MAX_THREADS)

w

– 2D grid of blocks:     dim blocks( w / MAX_THREADS +1, h)

thread thread threadthreadthread
1

thread
2

thread
max-1

thread
3

h
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Assignment Sheet 01

Image Differences
Dot Product
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Todo
• Download excercise01.tar.gz from course web page.

tar –xzf excercise01.tar.gz

• Look into readme.txt howto setup environment variables

• Solve and submit the excercises
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Image Difference
• Compute the absolute difference between two images 

independently for all three colors

• Output is again an RGB image
• Use the testGamma.cu example as a starting point

• Execute your program with the given image pair: 
vase.ppm & vase_blur.ppm

• For benchmarking: execute your kernel multiple times
in a for-loop and use the \time commandin a for loop and use the \time command.
How does the MAX_THREADS and MAX_BLOCKS 
influence the performance? Plot a graph with different 

i i bl
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settings or write a table



Dot Product
• Compute the dot product of two large scalar vectors

• Use the testDotProduct.cu skeleton example and fill in 
the missing gaps

• Execute for vector sizes 10000, 1000000, 100000000

• Similar to the already given CPU version, the dot 
product should be executed multiple timesproduct should be executed multiple times

• After how many iterations does the GPU start being• After how many iterations does the GPU start being 
faster than the CPU? (use the \time command)

• Examine again how the grid and block layout influence
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Examine again how the grid and block layout influence 
performance (again table or graph)


