
Ph D School inPh.D. School in
Scientific GPU Computingp g

Hendrik Lensch

Ph.D. Summer School – Scientific GPU Computing

CUDA Programming Model

Ph.D. Summer School – Scientific GPU Computing

GeForce 8800
16 highly threaded SM’s, >128 FPU’s, 367 GFLOPS, 768 MB DRAM, 86.4

GB/S Mem BW, 4GB/S BW to CPU

Input Assembler

Host

Thread Execution Manager

Input Assembler

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store Load/store

Ph.D. Summer School – Scientific GPU Computing

Global Memory

Thread Batching: Grids and Blocks
• A kernel is executed as a grid of

thread blocks
– All threads share data memory

Host Device

– All threads share data memory
space

• A thread block is a batch of
threads that can cooperate with

Kernel
1

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

threads that can cooperate with
each other by:
– Synchronizing their execution

• For hazard free shared memory

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

• For hazard-free shared memory
accesses

– Efficiently sharing data through a
low latency shared memory

Kernel
2

Grid 2

• Two threads from two different
blocks cannot cooperate Block (1, 1)

Thread Thread Thread Thread Thread

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Ph.D. Summer School – Scientific GPU Computing

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Courtesy: NDVIA

New Stuff
• Function Quantifiers

– __device__ callable on the GPU from the GPU
– __global__ callable on the GPU from the CPU
– __host__ callable on the CPU from the CPU

• Variable Quantifiers• Variable Quantifiers
– __device__ global memory on the GPU
– __constant__ constant memory on the GPU

h d bl k th GPU– __shared__ shared per-block memory on the GPU

• Built-in Variables
i di i f id d bl k i– gridDim, blockDim gives dimensions of grids and blocks in

kernel
– blockIdx, threadIdx gives index of block and thread in

kernel
• Built-in Vector Types

float2 float3 float4 etc

Ph.D. Summer School – Scientific GPU Computing

– float2, float3, float4, etc.

CUDA Function Declarations
Executed

on the:
Only callable

from the:on the: from the:

__device__ float DeviceFunc() device device

__global__ void KernelFunc() device host

__host__ float HostFunc() host host

• __global__ defines a kernel function, must return void

• __device__ and __host__ can be used together

Ph.D. Summer School – Scientific GPU Computing

Calling a Kernel Function – Thread Creation
• A kernel function must be called with an execution

configuration:

__global__ void KernelFunc(...);
dim3 DimGrid(100, 50); // 5000 thread blocks
dim3 DimBlock(4, 8, 8); // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid DimBlock SharedMemBytes >>>();KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);
cudaThreadSynchronize();

• Any call to a kernel function is asynchronous from
CUDA 1.0 on, explicit sync needed for blocking

• Need to synchronize/ wait for the execution to end:

Ph.D. Summer School – Scientific GPU Computing

cudaThreadSynchronize()

Cuda Utility Functions
• Use them to hunt bugs more easily!
• It is so easy to start a kernel that does not do anything ; (• It is so easy to start a kernel that does not do anything ;-(
• You better want to know if the device memroy is really

allocated, if the kernel is called or not.

CUDA SAFE CALL(cudaMalloc(&devData size));CUDA_SAFE_CALL(cudaMalloc(&devData, size));
…
kernel<<< 400234, 1024 >>>();
CUT CHECK ERROR(“k l f il d\ ")CUT_CHECK_ERROR(“kernel failed\n");
CUDA_SAFE_CALL(cudaThreadSynchronize());

Ph.D. Summer School – Scientific GPU Computing

Principle Mode of Cuda Programming

1. Upload data to GPUp
– various different ways
– try to minimize this upload

2 E t th k l2. Execute the kernel
– each thread typically produces one output element

(the most easy way of thinking about parallelism)
3. Download and analyze the results

– one can distill results down to a single number on the GPU
programming effort might be reduced if downloading the results of– programming effort might be reduced if downloading the results of
all threads, computing a final aggregation on the CPU

Ph.D. Summer School – Scientific GPU Computing

Allocation&Up/Download of Data
• allocation (standard memory)

float* devData;
d M ll ((id**) d D t El t * i f(fl t))cudaMalloc((void**)&devData, nElements * sizeof(float));

…
cudaFree(devData);

• upload/download
fl * h fl [i i]float* hostData = new float[imgsize];
// upload
cudaMemcpy(devData,hostData,size,cudaMemcpyHostToDevice);

// download
cudaMemcpy(hostData,devData,size,cudaMemcpyDeviceToHost);

Ph.D. Summer School – Scientific GPU Computing

CUDA Example

Ph.D. Summer School – Scientific GPU Computing

Simple Example: Gamma Correction
• 2000x3500 pixels
• for each color channel

– c = pow(c,0.8)

compute w/o Cuda

Ph.D. Summer School – Scientific GPU Computing

compute w/o Cuda

First steps
• locate nvcc

– nvcc –V
– release 2.0

l t d dk• locate cuda_sdk

• make your own project folder• make your own project folder

• compile with: nvcc –o gamma o –c gamma cu• compile with: nvcc –o gamma.o –c gamma.cu
• link with (if necessary): g++ -o gamma.o

Ph.D. Summer School – Scientific GPU Computing

First Steps
• cuda toolkit:

/opt/cuda

• cuda sdk:
/ / //opt/cuda/sdk

• in your shell:• in your shell:
export CUDA_INSTALL_PATH=“/opt/cuda”
export CUDA SDK DIR=“/opt/cuda/sdk”p _ _ p
export PATH=“/opt/cuda/open64/bin/:$PATH”

tar –xzf excercise01.tar.gz
cd gamma
make

Ph.D. Summer School – Scientific GPU Computing

make
./testGamma vase.ppm 0.5 1 out.ppm

Subdividing into Blocks&Threads
• in this example

– each thread computes the output of a single pixel

w

– each block is one pixel high (1xMAX_THREADS)
– multiple blocks span each line of the image

block(0,h-1) block(1,h-1) block(2,h-1)

h

block(0,1) block(1,1) block(2,1)

Ph.D. Summer School – Scientific GPU Computing

block(0,0) block(1,0) block(2,0)
b oc (0,) b oc (,) b oc (,)

Subdividing into Blocks&Threads
• in this example

– 1D block of threads: dim threads(MAX_THREADS)

w

– 2D grid of blocks: dim blocks(w / MAX_THREADS +1, h)

thread thread threadthreadthread
1

thread
2

thread
max-1

thread
3

h

Ph.D. Summer School – Scientific GPU Computing

Subdividing into Blocks&Threads
• in this example

– 1D block of threads: dim threads(MAX_THREADS)

w

– 2D grid of blocks: dim blocks(w / MAX_THREADS +1, h)

thread thread threadthreadthread
1

thread
2

thread
max-1

thread
3

h

Ph.D. Summer School – Scientific GPU Computing

Subdividing into Blocks&Threads
• in this example

– 1D block of threads: dim threads(MAX_THREADS)

w

– 2D grid of blocks: dim blocks(w / MAX_THREADS +1, h)

thread thread threadthreadthread
1

thread
2

thread
max-1

thread
3

h

Ph.D. Summer School – Scientific GPU Computing

Assignment Sheet 01

Image Differences
Dot Product

Ph.D. Summer School – Scientific GPU Computing

Todo
• Download excercise01.tar.gz from course web page.

tar –xzf excercise01.tar.gz

• Look into readme.txt howto setup environment variables

• Solve and submit the excercises

Ph.D. Summer School – Scientific GPU Computing

Image Difference
• Compute the absolute difference between two images

independently for all three colors

• Output is again an RGB image
• Use the testGamma.cu example as a starting point

• Execute your program with the given image pair:
vase.ppm & vase_blur.ppm

• For benchmarking: execute your kernel multiple times
in a for-loop and use the \time commandin a for loop and use the \time command.
How does the MAX_THREADS and MAX_BLOCKS
influence the performance? Plot a graph with different

i i bl

Ph.D. Summer School – Scientific GPU Computing

settings or write a table

Dot Product
• Compute the dot product of two large scalar vectors

• Use the testDotProduct.cu skeleton example and fill in
the missing gaps

• Execute for vector sizes 10000, 1000000, 100000000

• Similar to the already given CPU version, the dot
product should be executed multiple timesproduct should be executed multiple times

• After how many iterations does the GPU start being• After how many iterations does the GPU start being
faster than the CPU? (use the \time command)

• Examine again how the grid and block layout influence

Ph.D. Summer School – Scientific GPU Computing

Examine again how the grid and block layout influence
performance (again table or graph)

