Ph.D. School In
Scientific GPU Computing

Hendrik Lensch

Ph.D. Summer School — Scientific GPU Computing

CUDA Programming Model

Ph.D. Summer School — Scientific GPU Computing

Gelorce 83800

16 highly threaded SM’s, >128 FPU’s, 367 GFLOPS, 768 MB DRAM, 86.4
GB/S Mem BW, 4GB/S BW to CPU

. ! . ! ! .

Global Memory

Ph.D. Summer School — Scientific GPU Computing

Thread Batching: Grids and Blocks

« A Kkernelis executed as a grid of

thread blocks Host DENIES
— All threads share data memory Grid 1
space
P : Kernel » Block Block Block
« Athread block is a batch of 1 00 (L0 (20
threads that can cooperate with \
each other by: E(‘C'JO% Shock 1y Shock
— Synchronizing their execution e — —
 For hazard-free shared memory e
accesses /
— Efficiently sharing data through a Kefzne' —~—P
low latency shared memory o , I
« Two threads from two different A BN § N
blocks cannot cooperate SO B

Ph.D. Summer School — Scientific GPU Computing | Courtesy: NDVIA

New Stuff

 Function Quantifiers
— _ device__ callable on the GPU from the GPU
— __global __ callable on the GPU from the CPU
— __host__ callable on the CPU from the CPU

e Variable Quantifiers
— __device__ global memory on the GPU
— ___constant__ constant memory on the GPU
— __shared__ shared per-block memory on the GPU

 Built-in Variables
— gridDim, blockDim gives dimensions of grids and blocks in
kernel

— blockldx, threadldx gives index of block and thread in
kernel

e Built-in Vector Types
— float2, float3, fTloat4, etc.

Ph.D. Summer School — Scientific GPU Computing

CUDA Function Declarations

Executed Only callable
on the: from the:
__device float DeviceFunc(Q) device device
__global _ void KernelFunc(Q device host
__host_ float HostFunc() host host
« _ global _defines a kernel function, must return void
« _device__and __host__ can be used together

Ph.D. Summer School — Scientific GPU Computing

Calling a Kernel Function — Thread Creation

e A kernel function must be called with an execution
configuration:

~_global void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);
cudaThreadSynchronize();

« Any call to a kernel function is asynchronous from
CUDA 1.0 on, explicit sync needed for blocking

 Need to synchronize/ wait for the execution to end.:
cudaThreadSynchronize()

Ph.D. Summer School — Scientific GPU Computing

Cuda Utllity Functions

e Use them to hunt bugs more easily!
e Itis so easy to start a kernel that does not do anything ;-(

e You better want to know if the device memroy is really
allocated, if the kernel is called or not.

CUDA_SAFE_CALL(cudaMalloc(&devData, size));

kernel<<< 400234, 1024 >>>();
CUT_CHECK_ERROR(*“kernel failed\n');
CUDA SAFE_CALL(cudaThreadSynchronize());

Ph.D. Summer School — Scientific GPU Computing

Principle Mode of Cuda Programming

1. Upload data to GPU
— various different ways
— try to minimize this upload

2. Execute the kernel

— each thread typically produces one output element
(the most easy way of thinking about parallelism)

3. Download and analyze the results
— one can distill results down to a single number on the GPU

— programming effort might be reduced if downloading the results of
all threads, computing a final aggregation on the CPU

Ph.D. Summer School — Scientific GPU Computing

Allocation&Up/Download of Data

« allocation (standard memory)
float* devData;
cudaMalloc((void**)&devData, nElements * sizeof(float));

cudaFree(devData);

 upload/download
float* hostData = new float[imgsize];

cudaMemcpy(devData, hostData,size,cudaMemcpyHostToDevice);

cudaMemcpy (hostData,devData,size,cudaMemcpyDeviceToHost);

CUDA Example

Ph.D. Summer School — Scientific GPU Computing

Simple Example: Gamma Correction

e 2000x3500 pixels

e for each color channel
— ¢ = pow(c,0.8)

Ph.D. Summer School — Scientific GPU Computing

First steps

locate nvcc
— nvcc =V
— release 2.0

 |ocate cuda_sdk
« make your own project folder

pile with: nvcc —o0 gamma.o —c gamma.cu
k with (if necessary): g++ -0 gamma.o

o
O
S5 O

Ph.D. Summer School — Scientific GPU Computing

First Steps

e cudatoolkit:
/opt/cuda

 cuda sdk:
/opt/cuda/sdk

* inyour shell:
export CUDA INSTALL PATH=*/opt/cuda”
export CUDA SDK DIR=*“/opt/cuda/sdk”
export PATH=*“/opt/cuda/open64/bin/:$PATH”

tar —xzf excercisell.tar.gz

cd gamma

make

./testGamma vase.ppm 0.5 1 out.ppm

Ph.D. Summer School — Scientific GPU Computing

Subdividing into Blocks&Threads

e inthis example
— each thread computes the output of a single pixel
— each block is one pixel high (IXMAX_THREADS)

— multiple blocks span each line of the image
W

Ph.D. Summer School — Scientific GPU Computing

Subdividing into Blocks&Threads

e inthis example
— 1D block of threads: dim threads(MAX_ THREADS)
— 2D grid of blocks: dim blocks(w /7 MAX THREADS +1, h)

W

Ph.D. Summer School — Scientific GPU Computing

Subdividing into Blocks&Threads

e inthis example
— 1D block of threads: dim threads(MAX_ THREADS)
— 2D grid of blocks: dim blocks(w /7 MAX THREADS +1, h)

W

Ph.D. Summer School — Scientific GPU Computing

Subdividing into Blocks&Threads

e inthis example
— 1D block of threads: dim threads(MAX_ THREADS)
— 2D grid of blocks: dim blocks(w /7 MAX THREADS +1, h)

W

Ph.D. Summer School — Scientific GPU Computing

Assignment Sheet 01

Image Differences
Dot Product

Ph.D. Summer School — Scientific GPU Computing

Todo

« Download excerciseOl.tar.gz from course web page.
tar —xzf excercisell.tar.gz
 Look into readme.txt howto setup environment variables

e Solve and submit the excercises

Ph.D. Summer School — Scientific GPU Computing

Image Difference

« Compute the absolute difference between two images
iIndependently for all three colors

 Output is again an RGB image
 Use the testGamma.cu example as a starting point

 Execute your program with the given image pair:
vase.ppm & vase blur.ppm

 For benchmarking: execute your kernel multiple times
In a for-loop and use the \time command.
How does the MAX_THREADS and MAX_BLOCKS
Influence the performance? Plot a graph with different
settings or write a table

Ph.D. Summer School — Scientific GPU Computing

Dot Product

« Compute the dot product of two large scalar vectors

 Use the testDotProduct.cu skeleton example and fill in
the missing gaps

» Execute for vector sizes 10000, 1000000, 100000000

« Similar to the already given CPU version, the dot
product should be executed multiple times

o After how many iterations does the GPU start being
faster than the CPU? (use the \time command)

« Examine again how the grid and block layout influence
performance (again table or graph)

Ph.D. Summer School — Scientific GPU Computing

