
Assignment Sheet 4

Computing the coverage in a cell phone 
t knetwork

Ph.D. Summer School – Scientific GPU Computing 



Todo
• Download exercise04.tar.gz from course web page.

tar –xzf exercise04.tar.gz

Ph.D. Summer School – Scientific GPU Computing 



Cell Coverage
• In a large simplified cell phone network a number of 

senders have been placed randomly, each radiating at a 
different power level. The radiation power decreases 
with the squared distance. In our setup, a phone can 
still operate if it receives more than 1 unitstill operate if it receives more than 1 unit.

• Your task is to implement a system that, given the set of 
senders and a random collection of receivers,  
determines how many receivers will not be covered by 
the current system. 
Th b f i i ht b l ( 10 000 000)• The number of receivers might be large (e.g. 10.000.000) 
and the number of senders in the range of (1.000-
100.000).100.000).

Ph.D. Summer School – Scientific GPU Computing 



Work Description
• In the provided skeleton you will find code that already sets up the 

sender and receiver arrays. Furthermore, code for checking for 
coverage is already provided as well as a naïve CPU and Cudacoverage is already provided, as well as a naïve CPU and Cuda 
implementation for the problem. 

• In order to make the system run fast you have to do the following: 
t th d i t 2D f b k t– sort the senders into a 2D array of buckets

– sort the receivers into a 2D array of buckets
• Now the system can easily determine the nearest sender for each o t e syste ca eas y dete e t e ea est se de o eac

receiver by looking in just a small neighborhood of sender buckets 
around the receiver’s bucket. This way the complexity is 
significantly reduced from O(MN) to roughly O(M). The entire g y ( ) g y ( )
system is implemented in 
calculateSignalStrengthsSortedCuda().

• The function calculateSignalStrengthsSortedKernel() willThe function calculateSignalStrengthsSortedKernel() will 
use the result of your sorting.

• We chose bucket sort for its speed, simplicity and because of 
memor constraints

Ph.D. Summer School – Scientific GPU Computing 

memory constraints.



Hints
• The order of the elements in each bucket is not 

significant. In the bucket sort you do not need to sort 
the elements within each bucket, rather distribute the 
elements to their respective buckets. 

• You might want to use atomic functions to count how• You might want to use atomic functions to count how 
many elements will end up in each bucket.

• The problem size requires you to store the partiallyThe problem size requires you to store the partially 
sorted elements in an array of the same size as the 
input array. In order to compute where to start each 
b k t ld d P fi S A hbucket  you would need a PrefixSum. As we have a 
relatively small number of buckets, it would be o.k. to 
calculate the necessary PrefixSum sequentially in acalculate the necessary PrefixSum sequentially in a 
single thread on the GPU, avoiding any up and 
download: kernel<<<1,1>>>()

Ph.D. Summer School – Scientific GPU Computing 


